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The Component Life Cycle

Tool Development
- Numerical Libraries
- Parallel Computing Tools

Tool Development
- Numerical Libraries
- Parallel Computing Tools

Interface Specification
- 1-1 Tool Interoperability
- Common Interfaces

Interface Specification
- 1-1 Tool Interoperability
- Common Interfaces

Component Implementation
- Interface Compliance
- Framework Interactions

Component Implementation
- Interface Compliance
- Framework Interactions

Component Factories
- Automatically Generating Code

Component Factories
- Automatically Generating Code
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Unconstrained Minimization
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Ginzburg-Landau Superconductivity Model

Unconstrained optimization. Non-convex function. Hessian is
singular. Unique minimizer, but there is a saddle point.

Compute F: Structured Mesh, FD
Compute H: ADIFOR (manual)
Solve: TAO and PETSc

Compute F: Unstructured Mesh, FE
Compute H: ADIFOR (manual)
Solve: Custom Newton Solver, 

BlockSolve
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Numerical Tools Used

• Optimization 
– TAO
– Custom Tools

• Mesh Management
– SUMAA3d
– DAs (as part of PETSc)

• Linear Solvers
– PETSc, BlockSolve95

• Automatic Differentiation
– ADIC, ADIFor

• Parallel Tools
– MPICH, URB Partitioning

All are worthyAll are worthy

Some InteroperateSome Interoperate

None are ComponentsNone are Components

Observations:
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Interoperability of Numerical 
Libraries 

• Public interfaces are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the guts of both 
codes

• Not a scalable solution

SUMAA3d

Overture

DAs

AOMD

PETSc

Trilinos

ISIS++

Hypre
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For example…
PETSc-SUMAA3d Interoperability
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Common Interface Specification

Reduces the Many-to-Many problem to a Many-to-
One problem
– Allows interchangeability and experimentation
– Difficulties

• Interface agreement
• Functionality limitations
• Maintaining performance

SUMAA3d

Overture

DAs

AOMD

PETSc
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CCA Data Interface Specification 
• Subgroup of CCA forum, meeting quarterly since 

November 2000
• Goals:

– To support scientific data access at different levels
• low-level raw data
• multi-dimensional arrays
• meshes and fields
• parallel data distributions

– To manage alternative views into a data component via 
an “interface broker”

– Intended to be a basic 80-90% solution
• Various prototype implementations underway
• Participants: ANL, UofC, IU, LANL, LLNL, NASA, 

ORNL, PNNL, SNL, Terascale, UU
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Raw Data Interface

• Set of smart pointers containing name, location, 
pointer, size, type, strides describing a strip of 
memory
– collection of 1D buffers each of which can have a 

different type
• Modeled on unix IOvecs
• Low level and general 

– can therefore be used as a handle for moving data 
efficiently

• Considered to be local only
• Status: C. Rasmussen proposed, Forum voted and 

approved
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Multi-Dimensional Arrays
• Proposed Ports

– LocalArray
– LockingLocalArray
– DataDistQuery
– DataDistDefine
– DistributedArray

• Supports
– access to name, dimension, shape, strided subsets
– various types of distributions (e.g., cyclic, block, mapped)
– existing packages (e.g., Global Arrays, DAs, A++/P++)

• Status:
– LocalArray and LockingLocalArray have been extensively discussed
– DataDistQuery, DataDistDefine recently posted for the first time 
– DistributedArray under development

• Point of Contact: David Bernholdt (ORNL)
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(Unstructured) Meshes and Fields
• Considerations

– Connectivity information is explicitly stored and varies widely
– Underlying data structures are typically either lists or arrays
– Many packages exist that will not be rewritten

• Augmented to support a minimal set of required interfaces

• Status
– Nomeclature is determined (node, edge, face, cell, element)
– Connectivity information available in a table format
– Basic access to mesh entities via “block iterator” interfaces

• Provides efficient access to arrays by returning a pointer to the data
• Provides a natural interface for list-based data structures
• Provides a mechanism for agglomeration strategies

– Prototype implementations: Terascale, AOMD, SUMAA3d
– Testing in real applications to ensure performance

• Point of Contact: Lori Freitag (ANL)
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Issues that have arisen...

• Nomenclature by (an ever-shifting) committee is fun
• What level of interface should be defined?

– Minimal interfaces 
– Interfaces for convenience and performance?

• Cannot achieve the 100 percent solution, so...
– What functionalities should we define interfaces for?

• e.g., should the local array group worry about supporting BLAS 
operations?

– What about support of existing packages? 
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be required?

• Language interoperability issues
• Additional functionalities such as locking
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Interface Compliance

• Equation Solver Interface (ESI)
– Relatively mature interface definition effort

• Vectors
• Matrices
• Linear Solvers

– Multi-institutional working group
– Implemented by several solver packages

• Toolkit for Advanced Optimization (TAO) 
– PIs: Benson, McInnes, More’
– Large-scale, parallel optimization package

• Unconstrained problems
• Bound constrained problems
• Complementarity problems

– Relies on linear solvers as a kernel computation
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TAO codeUser code

Application
Initialization

Post-
Processing

TAO

Application Driver

Linear Solvers
(via ESI)

External linear algebra code

ISIS++

PETSc

Trilinos

SuperLUHypre

Matrices
(via ESI)

Vectors
(via ESI)

Others

Function  & Gradient
Evaluation

Hessian
Evaluation

Optimization Tools 

TAO

AD-generated code
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Original TAO Interface

TAO_SOLVER tao; /*  optimization solver  */
Vec                 x, g;                   /*  solution and gradient vectors 
PETSc data struct  */
TaoVecPetsc *xx, *gg;                  /* wrappers for the PETSc vectors */
ApplicationCtx     usercontext;      /*  user-defined context  */

TaoInitialize();

/* Initialize Application -- Create variable and gradient vectors x and g */   
…
vecCreate(MPI_COMM_WORLD, n, &x);

TaoWrapPetscVec(x, &xx);

TaoCreate(MPI_COMM_WORLD,”tao_lmvm”,&tao); 
TaoSetFunctionGradient(tao,x,g, FctGrad,(void*)&usercontext);

TaoSolve(tao);

/* Finalize application -- Destroy vectors x and g */   ...

TaoDestroy(tao);
TaoFinalize();



17

ESI compliance in TAO
(Leads: Steve Benson, Lois McInnes)

• TAO originally developed with PETSc vectors
– has no “native” TAO data structure for vectors, matrices, linear

solvers
– requires certain functionality that is accessed via wrappers of the 

underlying supporting packages 

• Migrating to ESI Vectors
– Terascale’s implementation as of 11/17/00
– First implementation uses Vector<double,int>
– Closely matching functionality (so far)  made it fairly straightforward
– Some additional routines required to support ESI in user functions

• Difficulties:
– Namespace conflict; both PETSc and ESI use the term “Scalar”
– Not all TAO algorithms can be supported with ESI interfaces
– Matrices and linear solvers are expected to be more challenging
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ESI TAO Interface
Include “Vector.h”
TAO_SOLVER     tao; /*  optimization solver  */
TaoVecESI            *xx; /*  solution vectors  */
ApplicationCtx     usercontext;     /*  user-defined context  */

TaoInitialize();

MapPartition<int> myMap(MPI_COMM_WORLD, n, 0);    /* ESI vector 
allocation */
Vector<double,int> *x=new Vector<double,int>(myMap);

xx=new TaoVecESI(x);                                                       /* wrap the 
functionality */

TaoCreate(MPI_COMM_WORLD,”tao_lmvm”,&tao);
TaoSetESIFunctionGradient(tao, xx, ESIFctGrad,(void*)&usercontext);

TaoSolve(tao);

/* Finalize application -- Destroy vectors x and g */   ...

TaoDestroy(tao);
TaoFinalize();
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CCA Compliance in TAO
(Leads: Boyanna Norris, Satish Balay, Lois McInnes)

Paradigm shift; both TAO and the application 
become components
– Each required to provide a default constructor and to 

implement the Component interface
• contains one method: “setServices” to register ports

– All interaction is through ports
• Application provides a “go” port and uses “taoSolver” and 

“MPI” ports
• TAO provides a “taoSolver” port

– There is no “main” 
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setServices

• Takes CCA Services class as input
– Provided by the framework
– Methods:  createPortInfo, getPort, releasePort, 

(un)registerUsesPort, addProvidesPort, 
removeProvidesPort, getComponentID

• Typical Usage
Services *svc;

gov::cca::PortInfo *pi=0

portinfo = svc->createPortInfo(“go”,”gov.cca.GoPort”,0);

GoPort *gp = dynamic_cast<gov::cca::GoPort *>(this);

svc->addProvidesPort(gp,portinfo);
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The Application Go Port
TAO_SOLVER tao; /*  optimization solver  */
TaoVecESI           *x;                   /*  solution vectors  */
ApplicationCtx     usercontext;     /*  user-defined context  */
Port                      *p;
TaoSolverComponent *taoSolver

if (scv==0)  return -1;                     /* check that setServices 
was called */  

p=svc->getPort((char *) “taoSolver”);                            /* get the TAO Solver 
Port */
if (p==0)  return -1;             /* check that taoSolver is 
out there */
taoSolver = dynamic_cast<TaoSolverComponent *>p;

taoSolver->initialize();

MapPartition<int> myMap(MPI_COMM_WORLD, n, 0);
Vector<double,int> *x=new Vector<double,int>(myMap);
xx=new TaoVecESI(x);

taoSolver->setInitialVector(x);
taoSolver->setGradientVector(g);
taoSolver->create();
taoSolver->setESIFunctionGradient(ESIFctGrad,(void*)&usercontext);
taoSolver->solve();
svc->releasePort(taoSolver);
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Running the CCA/ESI/TAO example

• Compile each component into a shared library 
• Used Sandia’s CCAFFIENE as the framework

– command line interface
• Instantiate each component

– e.g., create componentType instanceName (calls 
setServices)

– display component instanceName (shows type, name, 
registered ports)

• Connect the appropriate ports
– connect appInstance usesPort solveInstance providesPort

• Press the go button
– go appInstance goPort
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Component Factory Example
(Leads: P. Hovland, L. Grignon, L. McInnes, B. Norris, B. Smith)

• Automatically generating components from components
– Use automatic differentiation to generate gradient and 

Hessian components from function components
• What is Automatic Differentiation (AD), you ask?

a technology for automatically augmenting computer programs,
including arbitrarily complex simulations, with statements for the 
computation of derivatives.

• Every programming language provides a limited number of 
elementary mathematical functions

• Every function computed may be viewed as the composition of 
these so-called intrinsic functions

• Derivatives for the intrinsic functions are known and can be 
combined using the chain rule of differential calculus
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Why use AD?
Compared with numerical differentiation via divided 

differences and hand coding, AD offers
• Reduced effort 
• Performance

– Both FD and AD compute directional derivatives cheaply
• 1 additional function evaluation for FD

• ~2 function evaluations for AD (can be less)

• Accuracy
– FD very sensitive to step size; must balance truncation 

and roundoff error; guaranteed inaccurate
– AD analytic - suffers from roundoff error only
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Application
Initialization

Post-
Processing

TAO

Gradient Computations in TAO

Optimization Tools
(Newton -based Algorithms)

Application Driver

Parallel Hessian
assembly

Global-to-local 
scatter of ghost  values

Seed matrix
initialization

Local Hessian
computation

Global-to-local 
scatter of ghost  values

Parallel gradient
assembly

Local function 
computation

Solve
min { f(x)}

Local gradient 
computation

TAO codeUser code PETSc code AD-generated code
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Using AD with TAO

Global-to-local 
scatter of ghost  values

Parallel function
assembly

Local gradient 
computation

Parallel Hessian
assembly

Global-to-local 
scatter of ghost  values

Local Hessian
computation

Local gradient 
computation

ADIFOR or ADIC

Local Hessian
computation

Script file

Can be coded 
manually or 
automated

Seed matrix 
initialization
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Synergies of Component Design and AD

• AD makes numerical software development easier
– analytic derivatives without handcoding
– mechanisms for exploiting sparsity
– cheap directional derivatives

• Component design makes AD easier/better
– well-defined interfaces enable complete automation of AD
– components reveal high level semantics, making it 

possible to exploit mathematics
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Tool Availability

• TAO
– http://www.mcs.anl.gov/tao

• CCA
– http://www.cca-forum.org

• ESI
– http://z.ca.sandia.gov/esi/

• PETSc
– http://www.mcs.anl.gov/petsc

• Automatic Differentiation
– http://www.mcs.anl.gov/adifor/


